Appendix C

NOISE AND NOISE LEVEL REDUCTION GUIDELINES

THIS PAGE INTENTIONALLY LEFT BLANK

NOISE AND NOISE LEVEL REDUCTION GUIDELINES

C.1 General

Noise, often defined as unwanted sound, is one of the most common environmental issues associated with aircraft operations. Of course, aircraft are not the only sources of noise in an urban or suburban surrounding, where noise from interstate and local roadway traffic, rail, industrial, and neighborhood sources also intrude on the everyday quality of life. Nevertheless, aircraft are readily identifiable to those affected by their noise and are typically singled out for special attention and criticism. Consequently, aircraft noise problems often dominate analyses of environmental impacts.

Sound is a physical phenomenon consisting of minute vibrations that travel through a medium such as air, and are sensed by the human ear. Whether that sound is interpreted as pleasant (*e.g.*, music) or unpleasant (*e.g.*, aircraft noise) depends largely on the listener's current activity, past experience, and attitude toward the source of that sound. It is often true that one person's music is another person's noise.

The measurement and human perception of sound involves two basic physical characteristics - intensity and frequency. Intensity is a measure of the acoustic energy of the sound vibrations and is expressed in terms of sound pressure. The higher the sound pressure, the more energy carried by the sound and the louder the perception of that sound. The second important physical characteristic is sound frequency, that is, the number of times per second the air vibrates or oscillates. Low-frequency sounds are characterized as rumbles or roars, while high-frequency sounds are typified by sirens or screeches.

The loudest sounds, which can be detected comfortably by the human ear, have intensities that are a trillion times larger than those of sounds that can be detected at the lower end of the spectrum. Because of this vast range, any attempt to represent the intensity of sound using a linear scale becomes very unwieldy. As a result, a logarithmic unit known as the decibel (dB) is used to represent the intensity of a sound. Such a representation is called a sound level.

A sound level of 0 dB is approximately the threshold of human hearing and is barely audible under extremely quiet listening conditions. Normal speech has a sound level of approximately 60 dB. Sound levels above 120 dB begin to be felt inside the human ear as discomfort and eventually pain at still higher levels.

Because of the logarithmic nature of the decibel unit, sound levels cannot be added or subtracted directly and are somewhat cumbersome to handle mathematically. However, some simple rules are useful in dealing with sound levels. First, if a sound's intensity is doubled, the sound level increases by 3 dB, regardless of the initial sound level. Thus, for example:

60 dB + 60 dB = 63 dB, and

80 dB + 80 dB = 83 dB.

The total sound level produced by two sounds of different levels is usually only slightly more than the higher of the two. For example:

$$60.0 \text{ dB} + 70.0 \text{ dB} = 70.4 \text{ dB}.$$

Because the addition of sound levels behaves differently than that of ordinary numbers, such an addition is often referred to as "decibel addition" or "energy addition." The latter term arises from the fact that what is really happening when decibel values are added is each decibel value is first converted to its corresponding acoustic energy, then the energies are added using the normal rules of addition, and finally the total energy is converted to its decibel equivalent.

An important facet of decibel addition arises later when the concept of time-average sound levels is introduced to explain Day-Night Average A-Weighted Sound Level (DNL). Because of the logarithmic units, the louder levels that occur during the averaging period dominate the time-average sound levels. As a simple example, consider a sound level that is 100 dB and lasts for 30 seconds, followed by a sound level of 50 dB which also lasts for 30 seconds. The time-average sound level over the total 60-second period is 97 dB, not 75 dB.

Sound frequency is measured in terms of cycles per second (cps), or hertz (Hz), which is the preferred scientific unit for cps. The normal human ear can detect sounds that range in frequency from about 20 Hz to about 15,000 Hz. All sounds in this wide range of frequencies, however, are not heard equally well by the human ear, which is most sensitive to frequencies in the 1000 to 4000 Hz range. In measuring community noise, this frequency dependence is taken into account by adjusting the sound levels of the very high and low frequencies to approximate the human ear's lower sensitivity to those frequencies. This is called "A-weighting" and is commonly used in measurements of community environmental noise.

Sound levels measured using A-weighting are most properly called A-weighted sound levels while sound levels measured without any frequency weighting are most properly called sound levels. However, since most environmental impact analysis documents deal only with A-weighted sound levels, the adjective "A-weighted" is often omitted, and A-weighted sound levels are referred to simply as sound levels. In some instances it will be indicated that the sound levels have been A-weighted by using the abbreviation dBA or dB(A), rather than the abbreviation dB, for decibel. As long as the use of A-weighting is understood to be used, there is no difference implied by the terms "sound level" and "A-weighted sound level" or by the units dB, dBA, and dB(A).

In this document and most AICUZ documents, all sound levels are A-weighted sound levels and the adjective "A-weighted" has been omitted and dB is used for the decibel units.

Sound levels do not represent instantaneous measurements but rather averages over short periods of time. Two measurement time periods are most commonly used - one second and one-eighth of a second. Most environmental noise studies use slow response measurements, and the adjective "slow response" is usually omitted. It is easy to understand why the proper descriptor "slow response A-weighted sound level" is usually shortened to "sound level" in environmental impact analysis documents.

C.2 Noise Metrics

A "metric" is defined as something "of, involving, or used in measurement." In environmental noise analyses, a metric refers to the unit or quantity that quantitatively measures the effect of noise on the environment. Noise studies have typically involved a confusing proliferation of noise metrics as individual researchers have attempted to understand and represent the effects of noise. As a result, past literature describing environmental noise abatement has included many different metrics.

Various federal agencies involved in environmental noise mitigation agree on common metrics for environmental impact analysis documents, and both the Department of Defense (DoD) and the FAA specified those which should be used for federal aviation noise assessments. These metrics are as follows.

C.2.1 Maximum Sound Level

The highest A-weighted sound level measured during a single event in which the sound level changes value as time goes on (*e.g.*, an aircraft overflight) is called the maximum A-weighted sound level or maximum sound level, for short. It is usually abbreviated by ALM, L_{max} , or L_{Amax} .

C.2.2 Sound Exposure Level

Individual time-varying noise events have two main characteristics - a sound level which changes throughout the event and a period of time during which the event is heard. Although the maximum sound level, described above, provides some measure of the intrusiveness of the event, it alone does not completely describe the total event. The period of time during which the sound is heard is also significant. The Sound Exposure Level (abbreviated SEL or L_{AE}) combines both of these characteristics into a single metric.

Sound Exposure Level is a logarithmic measure of the total acoustic energy transmitted to the listener during the event. Mathematically, it represents the sound level of the constant sound that would, in one second, generate the same acoustic energy as did the actual time-varying noise event. Since aircraft overflights usually last longer than 1 second, the SEL of an overflight is usually greater than the ALM of the overflight.

Note that sound exposure level is a composite metric that represents both the intensity of a sound level of the constant sound and its duration. It does not directly represent the sound level heard at any given time, but rather provides a measure of the net impact of the entire acoustic event. It has been well established in the scientific community that SEL measures this impact much more reliably than just the ALM.

Because the SEL and the ALM are both A-weighted sound levels expressed in decibels, there is sometimes confusion between the two, so the specific metric used should be clearly stated.

C.2.3 Day-Night Average Sound Level

Time-average sound levels are measurements of sound levels that are averaged over a specified length of time. These levels provide a measure of the average sound energy during the measurement period.

For the evaluation of community noise effects, and particularly aircraft noise effects, the DNL (mathematically represented as L_{dn}) is used. DNL averages aircraft sound levels at a location over a complete 24-hour period, with a 10-dB adjustment added to those noise events that take place between 10:00 p.m. and 7:00 a.m. (local time). This 10-dB "penalty" represents the added intrusiveness of sounds that occur during normal sleeping hours, both because of the increased sensitivity to noise during those hours and because ambient sound levels during nighttime are typically about 10 dB lower than during daytime hours.

As noted earlier for SEL, DNL does not represent the sound level heard at any particular time. DNL provides a single measure of overall noise impact, but does not provide specific information on the number of noise events or the individual sound levels which occur during the day. For example, a DNL of 65 dB could result from a very few noisy events, or a large number of quieter events.

Scientific studies and social surveys which have been conducted to evaluate community annoyance to all types of environmental noise have found the DNL to be the best measure to predict annoyance. Its use is endorsed by the scientific community (See References C.1 through C-5 at the end of this section).

There is, in fact, a remarkable consistency in the results of attitudinal surveys about aircraft noise conducted in different countries to find the percentages of groups of people who express various degrees of annoyance when exposed to different levels of DNL.

Reference C.6 was published in 1978. A more recent study has reaffirmed this relationship (Reference C.7). In general, correlation coefficients of 0.85 to 0.95 are found between the percentages of groups of people highly annoyed and the level of average noise exposure. The correlation coefficients for the annoyance of individuals are relatively low, however, on the order of 0.5 or less. This is not surprising, considering the varying personal factors that influence the manner in which individuals react to noise. Nevertheless, findings substantiate that community annoyance to aircraft noise can be predicted quite reliably using DNL.

This relation between community annoyance and DNL has been confirmed, even for infrequent aircraft noise events. Reference C.8 reported the reactions of individuals in a community to daily helicopter overflights correlated quite well with the daily time-average sound levels over this range of numbers of daily noise events.

The use of DNL has been criticized as not accurately representing community annoyance and land-use compatibility with aircraft noise. Much of that criticism stems from a lack of understanding of the basis for the measurement or calculation of L_{dn} . One frequent criticism is based on the principle that people inherently react more to single noise events and not as much to "meaningless" time-average sound levels.

In fact, a time-average noise metric, such as DNL, takes into account both the noise levels of all individual events which occur during a 24-hour period and the number of times those events occur. As described briefly above, the logarithmic nature of the decibel unit causes the noise levels of the loudest events to control the 24-hour average.

As a simple example of this characteristic, consider a case in which only one aircraft overflight occurs in daytime during a 24-hour period, creating a sound level of 100 dB for 30 seconds. During the remaining 23 hours, 59 minutes, and 30 seconds of the day, the ambient sound level is 50 dB. The DNL for this 24-hour period is 65.5 dB. Assume, as a second example, that ten such 30-second overflights occur in daytime hours during the next 24-hour period, with the same ambient sound level of 50 dB during the remaining 23 hours and 55 minutes of the day. The DNL for this 24-hour period is 75.4 dB. Clearly, the averaging of noise over a 24-hour period does not ignore the louder single events and tends to emphasize both the sound levels and number of those events. This is the basic concept of a time-average sound metric, and specifically the DNL.

C.3 Noise Effects

C.3.1 Hearing Loss

Noise-induced hearing loss is probably the best-defined of the potential effects of human exposure to excessive noise. Federal workplace standards for protection from hearing loss allow a time-average level of 90 dB over an 8-hour work period, or 85 dB averaged over a 16-hour period. An outdoor DNL of 75 dBA is considered the threshold above which the risk of hearing loss should be evaluated. Following guidelines recommended by the Committee on Hearing, Bioacoustics, and Biomechanics of the National Research Council, the average change in the threshold of hearing for people exposed to DNL equal to or greater than 75 dBA was evaluated. Results indicated that an average of 1 dBA hearing loss could be expected for people exposed to DNL equal to or greater than 75 dBA. For the most sensitive 10 percent of the exposed population, the maximum anticipated hearing loss would be 4 dBA. These hearing loss projections must be considered conservative as the calculations are based on an average daily outdoor exposure of 16 hours (7:00 a.m. to 10:00 p.m.) over a 40-year period. Since it is unlikely that airport neighbors will remain outside their homes 16 hours per day for extended periods of time, there is little possibility of hearing loss below a DNL of 75 dB, and this level is extremely conservative.

C.3.2 Nonauditory Health Effects

Nonauditory health effects of long-term noise exposure, where noise may act as a risk factor, have never been found to occur at levels below those protective against noise-induced

hearing loss, described above. Most studies attempting to clarify such health effects have found that noise exposure levels established for hearing protection will also protect against any potential nonauditory health effects, at least in workplace conditions. The best scientific summary of these findings is contained in the lead paper at the National Institute of Health Conference on Noise and Hearing Loss, held on 22-24 January 1990 in Washington, D.C.

"The nonauditory effects of chronic noise exposure, when noise is suspected to act as one of the risk factors in the development of hypertension, cardiovascular disease, and other nervous disorders, have never been proven to occur as chronic manifestations at levels below these criteria (an average of 75 dBA for complete protection against hearing loss for an eight-hour day). At the recent (1988) International Congress on Noise as a Public Health Problem, most studies attempting to clarify such health effects did not find them at levels below the criteria protective of noise-induced hearing loss, and even above these criteria, results regarding such health effects were ambiguous. Consequently, one comes to the conclusion that establishing and enforcing exposure levels protecting against noise-induced hearing loss would not only solve the noise-induced hearing loss problem but also any potential nonauditory health effects in the work place." (Reference C.9; parenthetical wording added for clarification.)

Although these findings were directed specifically at noise effects in the work place, they are equally applicable to aircraft noise effects in the community environment. Research studies regarding the nonauditory health effects of aircraft noise are ambiguous, at best, and often contradictory. Yet, even those studies which purport to find such health effects use time-average noise levels of 75 dB and higher for their research.

For example, in an often-quoted paper, two University of California at Los Angeles (UCLA) researchers apparently found a relationship between aircraft noise levels under the approach path to Los Angeles International Airport and increased mortality rates among the exposed residents by using an average noise exposure level greater than 75 dB for the "noise-exposed" population (Reference C.10). Nevertheless, three other UCLA professors analyzed those same data and found no relationship between noise exposure and mortality rates (Reference C.11).

In summary, there is no scientific basis for a claim that potential health effects exist for aircraft DNL below 75 dB.

C.3.3 Annoyance

The primary effect of aircraft noise on exposed communities is one of annoyance. Noise annoyance is defined by the U.S. Environmental Protection Agency as any negative subjective reaction on the part of an individual or group (Reference C.3). As noted in the discussion of DNL above, community annoyance is best predicted by that metric.

It is often suggested that a lower DNL, such as 60 or 55 dB, be adopted as the threshold of community noise annoyance for airport environmental analysis documents. While there is no technical reason why a lower level cannot be measured or calculated for comparison purposes, a DNL of 65 dB:

- provides a valid basis for comparing and assessing community noise effects;
- represents a noise exposure level which is normally dominated by aircraft noise and not other community or nearby highway noise sources; and
- reflects the FAA's threshold for grant-in-aid funding of airport noise mitigation projects.
- United States Department of Housing and Urban Development also establishes a DNL standard of 65 dB for eligibility for federally guaranteed home loans.

C.3.4 Speech Interference

Speech interference associated with aircraft noise is a primary cause of annoyance to individuals on the ground. The disruption of routine activities such as radio or television listening, telephone use, or family conversation gives rise to frustration and irritation. The quality of speech communication is also important in classrooms, offices, and industrial settings and can cause fatigue and vocal strain in those who attempt to communicate over the noise. Research has shown that "whenever intrusive noise exceeds approximately 60 dB indoors, there will be interference with speech communication" (Reference C.5). A steady A-weighted background sound level of 60 dB will produce 93 percent intelligibility; that of 70 dB will produce 66 percent intelligibility; and that of 75 dB will produce 2 percent intelligibility (Figure D-1 in Reference C.3).

C.3.5 Sleep Interference

Sleep interference may be measured in either of two ways. "Arousal" represents actual awakening from sleep, while a change in "sleep stage" represents a shift from one of four sleep stages to another stage of lighter sleep without actual awakening. In general, arousal requires a somewhat louder noise level than does a change in sleep stage.

A recent analysis sponsored by the Air Force summarized 21 published studies concerning the effects of noise on sleep (Reference C.14). The analysis concluded that a lack of reliable studies in homes, combined with large differences among the results from the various laboratory studies and the limited in-home studies, did not permit development of an acceptable accurate assessment procedure. The noise events used in the laboratory studies and in contrived in-home studies were presented at much higher rates of occurrence than would normally be experienced in the home. None of the laboratory studies was of sufficiently long duration to determine any effects of habituation, such as those which would occur under normal community conditions.

Nevertheless, some guidance is available in judging sleep interference. The U.S. Environmental Protection Agency (USEPA) identified an indoor DNL of 45 dB as necessary

to protect against sleep interference (Reference C.3). Assuming a very conservative structural noise insulation of 20 dB for typical dwelling units, this corresponds to an outdoor DNL of 65 dB as minimizing sleep interference.

The Federal Interagency Committee on Noise (Reference C.5) reviewed the sleep disturbance issue and presented an Air Force-developed sleep disturbance dose-response prediction curve, which is based on data from Reference C.14, as an interim tool for analysis of potential sleep disturbance. This interim curve shows that for an indoor SEL of 65 dB, approximately 15 percent or less of those exposed should be awakened.

C.3.6 Noise Effects on Domestic Animals and Wildlife

Animal species differ greatly in their responses to noise. Each species has adapted, physically and behaviorally, to fill its ecological role in nature, and its hearing ability usually reflects that role. Animals rely on their hearing to avoid predators, obtain food, and communicate with and attract other members of their species. Aircraft noise may mask or interfere with these functions. Secondary effects may include nonauditory effects similar to those exhibited by humans - stress, hypertension, and other nervous disorders. Tertiary effects may include interference with mating and resultant population declines.

Many scientific studies are available regarding the effects of noise on wildlife and some anecdotal reports of wildlife "flight due to noise." Few of these studies or reports include any reliable measures of the actual noise levels involved.

In the absence of definitive data on the effect of noise on animals, the Committee on Hearing, Bioacoustics, and Biomechanics proposed that protective noise criteria for animals be taken to be the same as for humans (Reference C.16).

C.3.7 Effects of Noise-Induced Vibration on Structures and Humans

The sound from an aircraft overflight travels from the exterior to the interior of the house in one of two ways: through the solid structural elements and directly through the air. The sound transmission starts with noise impinging on the wall exterior. Some of this sound energy will be reflected away and some will make the wall vibrate. The vibrating wall radiates sound into the airspace, which in turn sets the interior finish surface vibrating, with some of the energy lost in the airspace. This surface then radiates sound into the dwelling interior. Vibrational energy also bypasses the air cavity by traveling through the studs and edge connections.

Normally, the most sensitive components of a structure to airborne noise are the windows and, infrequently, the plastered walls and ceilings. An evaluation of the peak sound pressure impinging on the structure is normally sufficient to determine the possibility of damage. In general, at sound levels above 130 dB, there is the possibility of structural damage. While certain frequencies (such as 30 Hz for window breakage) may be of more concern than other frequencies, conservatively, only sounds lasting more than 1 second above a sound level of 130 dB are potentially damaging to structural components (Reference C.17).

In terms of average acceleration of wall or ceiling vibration, the thresholds for structural damage (C.18) are:

- 0.5 meters/sec/sec—threshold of risk of damage to sensitive structures (e.g., ancient monuments); and
- meters/sec/sec—threshold of risk of damage to normal dwellings (e.g., houses with plaster ceilings and walls).

Noise-induced structural vibration may also cause annoyance to dwelling occupants because of induced secondary vibrations, or "rattle," of objects within the dwelling - hanging pictures, dishes, plaques, and bric-a-brac. Loose window panes may also vibrate noticeably when exposed to high levels of aircraft noise, causing homeowners to fear breakage. In general, such noise-induced vibrations occur at sound levels above those considered normally compatible with residential land use. Thus, assessments of noise exposure levels for compatible land use should also be protective of noise-induced secondary vibrations.

In the assessment of vibrations on humans, the following factors determine if a person will perceive and possibly react to building vibrations:

- Type of excitation: steady state, intermittent, or impulsive vibration;
- Frequency of the excitation. ISO 2631-2 (Reference C.18) recommends a frequency range of 1 to 80 Hz for the assessment of vibration on humans;
- Orientation of the body with respect to the vibration;
- The use of the occupied space; and
- Time of day.

C.3.8 Noise Effects on Terrain

It has been suggested that noise levels associated with low-flying aircraft may affect the terrain under the flight path by disturbing fragile soil or snow structures, especially in mountainous areas, causing landslides or avalanches. There are no known instances of such effects, and it is considered improbable that such effects will result from routine, subsonic aircraft operations.

C.3.9 Noise Effects on Historical and Archaeological Sites

Because of the potential for increased fragility of structural components of historical buildings and other historical sites, aircraft noise may affect such sites more severely than newer, modern structures. Again, there are few scientific studies of such effects to provide guidance for their assessment.

One study involved the measurements of sound levels and structural vibration levels in a superbly restored plantation house, originally built in 1795, and now situated approximately 1,500 feet from the centerline at the departure end of Runway 19L at Washington Dulles International Airport. These measurements were made in connection with the proposed

scheduled operation of the supersonic Concorde airplane at Dulles (Reference C.19). There was a special concern for the building's windows, since roughly half of the 324 panes were original. No instances of structural damage were found. Interestingly, despite the high levels of noise during Concorde takeoffs, the induced structural vibration levels were actually less than those induced by touring groups and vacuum cleaning.

As noted above for the noise effects of noise-induced vibrations of normal structures, assessments of noise exposure levels for normally compatible land uses should also be protective of historic and archaeological sites.

C.4 Noise Level Reduction Guidelines

A study that provides in-depth, state-of-the-art noise level reduction guidelines was prepared for the Naval Facilities Engineering Command (NAVFAC) in April 2005. The title of the document is *Guidelines for the Sound Insulation of Residences Exposed to Aircraft Operations* (C.20). A copy of this document can be obtained from NAVFAC Southern Division, Charleston, SC.

C.5 References

- C.1. "Sound Level Descriptors for Determination of Compatible Land Use," American National Standards Institute Standard ANSI S3.23-1980.
- C.2. "Quantities and Procedures for Description and Measurement of Environmental Sound, Part 1," American National Standards Institute Standard ANSI S12.9-1988.
- C.3. "Information on Levels of Environmental Noise Requisite to Protect the Public Health and Welfare With an Adequate Margin of Safety," U.S. Environmental Protection Agency Report 550/9-74-004, March 1972.
- C.4. "Guidelines for Considering Noise in Land-Use Planning and Control," Federal Interagency Committee on Urban Noise, June 1980.
- C.5. "Federal Agency Review of Selected Airport Noise Analysis Issues," Federal Interagency Committee on Noise, August 1992.
- C.6. Schultz, T.J. "Synthesis of Social Surveys on Noise Annoyance," J. Acoust. Soc. Am., 64, 377-405, August 1978.
- C.7. Fidell, S., Barger, D.S., and Schultz, T.J., "Updating a Dosage-Effect Relationship for the Prevalence of Annoyance Due to General Transportation Noise," J. Acoust. Soc. Am., 89, 221-233, January 1991.
- C.8. "Community Reactions to Helicopter Noise: Results from an Experimental Study," J. Acoust. Soc. Am., 82,479-492, August 1987.

- C.9. Von Gierke, H.R., "The Noise-Induced Hearing Loss Problem," NIH Consensus Development Conference on Noise and Hearing Loss, Washington D.C., 22-24 January 1990.
- C.10. Meacham, W.C., and Shaw, N., "Effects of Jet Noise on Mortality Rates," British J. Audiology, 77-80, August 1979.
- C.11. Frericks, R.R., *et al.*, "Los Angeles Airport Noise and Mortality: Faulty Analysis and Public Policy," Am J. Public Health, 357-362, April 1980.
- C.12. Jones, F.N., and Tauschr, J., "Residence Under an Airport Landing Pattern as a Factor in Teratism," Archives of Environmental Health, 10-12 Jan/Feb 1978.
- C.13.Edmonds, L.D., *et al.*, "Airport Noise and Teratogenesis," Archives of Environmental Health, 243-247, July/August 1979.
- C.14. Pearsons, K.S., Barber, D.S. and Tabachick, B.G., "Analyses of the Predictability of Noise-Induced Sleep Disturbance," USAF Report HSD-TR-89-029, October 1989.
- C.15.Kryter, K.D., "Physiological, Psychological, and Social Effects of Noise," NASA Reference Publication 1115, 446, July 1984.
- C.16. "Guidelines for Preparing Environmental Impact Statements on Noise," Committee on Hearing, Bioacoustics and Biomechanics, The National Research Council, National Academy of Sciences, 1977.
- C.17. Von Gierke, H.E., and Ward, W.D., "Criteria for Noise and Vibration Exposure," Handbook of Acoustical Measurements and Noise Control, Third Edition, 1991.
- C.18. "Evaluation of Human Exposure to Whole-Body Vibration Part 2: Continuous and Shock-Induced Vibration in Buildings (1 to 80 Hz)", International Organization for Standardization, Standards 2631-2, February 1989.
- C.19. Wesler, J.E., "Concorde Operations at Dulles International Airport," NOISEEXPO '77, Chicago, IL, March 1977.
- C.20. Guidelines for the Sound Insulation of Residences Exposed to Aircraft Operations, Department of the Navy, Naval Facilities Engineering Command, Washington Navy Yard, 1322 Patterson Avenue, S.W., Suite 1000, Washington, DC 20374-5065.

THIS PAGE INTENTIONALLY LEFT BLANK